Tableau 6 (suite)

Le premier atome appartient à la molécule (i), en position x, y, z, le deuxième à l'une des molécules:

ii	x + 1,	у,.	Ζ
iii	$\frac{1}{2} + x, \frac{1}{2}$	-y, 1-	- <i>z</i>
iv	$x - \frac{1}{2}, \frac{1}{2}$	-y, 2-	- <i>z</i>
v	$\frac{1}{2} - x, 1$	$-y, \frac{1}{2}+$	- <i>z</i>

 \dagger Distance obtenue en supposant que les liaisons C-H sont parallèles aux liaisons C-C et ont une longueur de 1,08 Å.

Les molécules (i) à (v) ont été représentées en vue stéréoscopique sur la Fig. 3, au moyen du programme *ORTEP* de Johnson (1965). La demie-maille représentée est définie par les vecteurs **a** (horizontal), **b**/2 (vertical) et **c** (vers l'avant de la Figure). Les atomes de chlore, oxygène et carbone sont représentés par leur ellipsoïde de vibration. La probabilité de présence du centre de l'atome à l'intérieur de l'ellipsoïde est 0,5. Les atomes d'hydrogène sont représentés par des sphères de 0,1 Å de rayon. Les liaisons C-Cl sont noircies.

References

- BURNS, D. M., FERRIER, W. G. & MCMULLAN, J. T. (1967). Acta Cryst. 22, 623.
- CHU, S. C., JEFFREY, G. A. & SAKURAI, T. (1962). Acta Cryst. 15, 661.
- GROTH, P. (1917). *Chemische Krystallographie*, 4. Teil, p. 142, Leipzig: Engelmann.
- HAMILTON, W. C. (1964). Statistics in Physical Science. New York: Ronald Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Tennessee.
- LEVY, S. & SCHULTZ, G. (1881). Ann. Chem. 210, 133.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- PREWITT, C. T. (1962). FORTRAN Crystallographic Least Squares Program, Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- Schomaker, V., Waser, J., Marsh, R. E. & Bergman, G. (1959). Acta Cryst. 12, 600.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.

TROTTER, J. (1960). Acta Cryst. 13, 86.

YATES, P., ARDAO, M. I. & FIESER, L. F. (1956). J. Amer. Chem. Soc. 78, 650.

Acta Cryst. (1970). B26, 1298

Les Dérivés Chlorés de la Benzoquinone-1,4. II. Structure Cristalline de la Dichloro-2,6-benzoquinone-1,4

Par B. Rees

Laboratoire de Cristallochimie, Institut de Chimie, 1 rue Blaise Pascal, 67-Strasbourg, France*

(Reçu le 17 décembre 1969)

The structure of 2,6-dichloro-*p*-benzoquinone has been determined from diffractometer measurements (Cu $K\alpha$ radiation). The final *R* value was 0.043. An interesting feature of the crystal structure is the existence of strong C=O···C=O interactions between neighbouring molecules.

Nous désignerons le composé étudié par B26.

Partie expérimentale

Préparation – données cristallographiques

B26 a été préparé suivant la méthode de Kehrmann & Tiesler (1889). Le composé obtenu a été caractérisé par son point de fusion et son spectre d'absorption dans l'infrarouge (Yates, Ardao & Fieser, 1956). Après recristallisation dans l'éther de pétrole, on obtient des cristaux présentant les formes décrites par Groth (1917). Contrairement à l'affirmation de Groth, qui le présente comme orthorhombique, le composé cristallise dans le système monoclinique. Les extinctions systématiques observées sur les clichés de Weissenberg et de précession conduisent au groupe d'espace $P2_1/c$. Les dimensions de la maille cristalline ont été affinées

par diffractométrie sur poudre. 15 pics de diffraction bien séparés ont été utilisés pour ce calcul, et l'incertitude a été estimée au seuil de probabilité de 0,05. La densité a été déterminée par pycnométrie dans l'eau. Les valeurs numériques sont les suivantes:

C₆O₂Cl₂H₂=176,99 $F=121 \pm 1$ °C (Kehrmann & Tiesler: 121 °C) Groupe spatial: $P2_1/c$ $a=9,061 \pm 0,008, b=5,500 \pm 0,004,$ $c=17,740 \pm 0,016$ Å; $\beta=126,53 \pm 0,05^{\circ}$

 $(22 \pm 2^{\circ}C; Cu K\alpha_1; \lambda = 1,54051 \text{ Å})$ $D_m = 1,658 \pm 0,010 \text{ g.cm}^{-3}; Z = 4; D_c = 1,654 \text{ g.cm}^{-3}.$

Enregistrement des intensités diffractées

Les clichés de Weissenberg ont montré que l'intensité des réflexions diminue rapidement lorsque l'angle de Bragg augmente. Elle est pratiquement toujours

^{*} Equipe de Recherche associée au C.N.R.S.

nulle lorsque sin θ/λ est supérieur à 0,55. Un rayonnement à plus courte longueur d'onde n'aurait donc pas pas permis de mesurer un plus grand nombre de réflexions, et c'est le rayonnement Cu K α ($\lambda = 1,5418$ Å) qui a été utilisé pour l'enregistrement. Le cristal utilisé était taillé en cylindre, d'axe b, et de diamètre $0,21 \pm$ 0,03 mm. Aucune correction d'absorption n'a été faite $(\mu_{Cu K\alpha} = 76.8 \text{ cm}^{-1})$. Un diffractomètre à monocristal Philips PAILRED muni d'un monochromateur a été utilisé pour la mesure des intensités diffractées. La technique de mesure était celle déjà décrite dans l'étude de la structure de la chlorobenzoquinone-1,4. 759 intensités de réflexions indépendantes ont été mesurées, 548 d'entre elles, dont l'écart-type de comptage estimé ne dépassait pas 0,2 fois l'intensité, ont été retenues pour la détermination de la structure.

Determination de la structure

Les facteurs de diffusion atomique sont ceux de Moore (1963). Ceux du chlore et de l'oxygène ont été corrigés de la dispersion anomale.

Nous avons utilisé la méthode de l'atome lourd. Des sections de la fonction de Patterson, parallèles à (010) ont été calculées et l'identification des pseudo-atomes Cl-Cl a permis de localiser les deux atomes de chlore de la molécule. Le calcul des facteurs de structure, avec ces deux atomes, conduit à un facteur résiduel (R) de 0,55. Le calcul des sections de densité électronique permet alors la localisation des atomes de carbone et d'oxygène (R = 0,35).

Fig.1. Section de la fonction-différence par le plan moyen de la molécule. Le calcul des F_c est fait sans la contribution de l'hydrogène. Les courbes d'égale densité électronique sont tracées de 0,1 en 0,1 e.Å-3, celles de densité négative sont en pointillés.

L'affinement des coordonnées atomiques et des facteurs d'agitation thermique isotrope a été réalisé par la technique de la fonction-différence. Au bout de six ajustements successifs par cette méthode le facteur Rétait de 0.17.

Nous avons alors placé les deux atomes d'hydrogène de la molécule, en supposant au départ que les liaisons C-H avaient une longueur de 1,08 Å et étaient parallèles aux liaisons C-C. Nous avons affecté à ces atomes des facteurs d'agitation thermique isotrope $B_{\rm H}$ définis par:

 $B_{\rm H} = 1,6 B_{\rm C} - 2,0$ (Goldstein, Seff & Trueblood, 1968) où $B_{\rm C}$ est le facteur d'agitation thermique isotrope de l'atome de carbone lié à H.

Aux autres atomes ont été attribués des facteurs d'agitation thermique anisotrope, qui ont été affinés, en même temps que les coordonnées, en cinq cycles du programme SFLS5 (Prewitt, 1962). La technique de l'affinement était celle déjà décrite pour la chlorobenzoquinone-1,4, et la pondération suivante a été adoptée: 0,25 si $|F_o| < 4$ et $|F_o| > 60$; 1 si $7 < |F_o| < 27$, avec interpolation linéaire entre ces intervalles. Au cours du dernier cycle, aucune coordonnée atomique ne varie de plus de 0.15σ .

Un essai d'affinement des positions et facteurs de température des atomes d'hydrogène a également été fait, mais les longueurs de liaison C-H ainsi obtenues sont moins satisfaisantes que si on localise les atomes d'hydrogène par la méthode de la fonction-différence. Pour cela nous avons calculé des sections de la fonction-différence à la fin de la détermination de la structure, en omettant la contribution des atomes d'hydrogène aux facteurs de structure calculés. Il apparaît deux pics, de hauteur 0,42 et 0,38 e.Å⁻³, dont les positions ont été supposées celles des atomes d'hydrogène. En dehors de ces deux pics, $|\varrho_o - \varrho_c|$ est toujours inférieur à 0,3 e.Å-3. La section de la fonction-différence par le plan moyen de la molécule est représentée sur la Fig. 1.

Le facteur résiduel final est de 0,043, le facteur résiduel pondéré selon Hamilton est: R' = 0,036. Les coordonnées et facteurs de température sont donnés dans les Tableaux 1 et 2.

Tableau	1	Coord	onnées	rel	'atives (´Χ.	10^{4})
ruoreau	••	00014	01111000	101	MILLED V		· · · ,	,

	x	У	Z
Cl(2)	2614 (2)	5768 (3)	300 (1)
Cl(6)	9003 (2)	5788 (3)	3784 (1)
O(1)	5405 (5)	7450 (7)	2204 (3)
O(4)	7429 (4)	- 567 (6)	1398 (2)
C(1)	5865 (7)	5607 (9)	2028 (3)
C(2)	4694 (6)	4424 (9)	1103 (3)
C(3)	5199 (7)	2435 (11)	897 (4)
C(4)	6978 (7)	1276 (9)	1584 (3)
C(5)	8199 (7)	2444 (11)	2506 (3)
C(6)	7655 (7)	4431 (10)	2704 (3)
H(3)	4390	1580	280
H(5)	9380	1500	2990

Les facteurs de structure calculés et observés sont rapportés dans le Tableau 3.

Analyse de l'agitation thermique

Cette analyse a été conduite comme dans l'étude de la chlorobenzoquinone-1,4 (Rees, 1970).

L'écart entre la plus forte et la plus faible valeur propre des tenseurs d'agitation thermique U_0 des atomes Cl, O et C est toujours plus de trois fois supérieur à l'écart-type estimé, ce qui montre l'anisotropie de l'agitation de ces atomes.

La comparaison de $\langle (U_o - U_c)^2 \rangle^{1/2} = 0,0032$ Å² et $\langle \sigma^2(U_o) \rangle^{1/2} = 0,0046$ Å² montre que l'hypothèse de la molécule rigide est globalement acceptable. Le Tab-

Tableau 2. Facteurs d'agitation thermique anisotropes (×10⁴) $f=f_0 \exp \left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\right].$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cl(2)	285 (4)	801 (8)	82 (1)	252 (5)	79 (2)	84 (2)
CI(6)	331 (4)	921 (9)	72 (1)	-237 (5)	87 (2)	150 (3)
DÌÌ	413 (11)	379 (15)	107 (3)	-4 (11)	170 (5)	- 25 (5)
D(4)	226 (8)	475 (17)	63 (2)	60 (9)	76 (3)	-15 (5)
CÌÌ	265 (13)	317 (21)	65 (3)	- 36 (15)	108 (6)	-3 (8)
C(2)	196 (11)	352 (21)	54 (3)	88 (12)	69 (5)	36 (7)
C(3)	162 (11)	480 (24)	39 (3)	6 (14)	42 (5)	-7 (7)
C(4)	180 (11)	331 (22)	49 (3)	-5 (11)	66 (5)	-1 (6)
C(5)	165 (11)	505 (25)	48 (3)	-27 (15)	55 (5)	-18(8)
C(6)	200 (12)	507 (27)	45 (3)	-110 (14)	65 (5)	- 54 (7)

Tableau 3. Facteurs de structure calculés et observés $(\times 10)$

н	ĸ	L	FC	}F0]	×	ĸ	L	FC	FOL	н	ĸ	L	FC	FO1	н	ĸ	L	FC	(FO)	н	ĸ	FC	if0i	H,	ĸ	Ļ.	FC	1401
1	۰	0	-400	399	٥	0	8	455	472	3	1	1	-300	305	-5	1	6	-230	234	-5	1.11	-88	94	-5	·2	2	110	110
ž	ō	ō	-372	376	i	ċ		146	149		1	1	-215	215	-4	1	6	-110	116	-4	1 11	n	74	-4	2	5	104	106
3	ó	ò	-371	396	- 3	0		-72	68	5	1	1	-41	46	-3	1	6	-176	182	-3	1 11	315	320	-3	з.	2	65	69
	0	0	393	415	-8	0	10	-59	54	-7	ı.	2	60	58	-2	1.	٠	311	319	-2	1 1	141	144	-2	2	2	57	54
5	Ó	ō	-274	272	-7	0	10	-229	223	-6	1	2	60	62	-1	1	6	-50	42	•	1 11	-101	100	-1	5	2	71	69
6	0	0	-203	200	-6	۰	10	-96	109	-4	1	2	95	90	•	1	٠	526	530	-7	1 13	- 30	47	0	2	2	304	267
-7	٥	2	-64	62	-5	0	10	100	109	-3	1	2	79	81	- 1	1	- 6	- 97	105	-6	1 1	82			-	2	-165	165
-0	٥	2	-108	111	-4	۰	10	82	92	-2	- 1 -	- 2	. 95	95	- 2	1		-87	90	-2		-135	133		٤.	÷.	-213	208
-5	٥	2	-208	216	-3	0	10	-192	199	-1	1	2	-112	116	3	1	•	- 62		- 1	1.11				4	-		
-4	0	- 2	334	334	-2		10	684	700	2		- 2	-235	242			•			- 14	1 1				\$:	- 517	211
- ?		2	647	651	-1	2	10	200	205			-					- ;		10		1.13	247	250		5	÷.	-151	152
		- 5	200			×	10	- 308	100			\$	111	141		:	÷	-248	248	-2	11	-140	135	-i	5	ā.	-48	46
-1	×	- 5	-347	536		Ň	12	-97			÷.	;	197	197		i	÷	-429	444	-ī	- i ii	-193	193	ŏ	ž	ŝ	-237	233
ş	Ň	- 5	-201			ŏ	12	- 45	19		ï	5	-113	108	-3	ī	ż	257	267	ō	i i	64	52	i	ž	3	- 327	314
;	ŏ	5	- 724	491	- 6	ŏ	12	115	115		ī	3	208	206	-2	ĩ	Ż	-235	244	-8	- i i•	54	46	ź	2	3	416	420
	õ	5	-132	135	-5	õ	12	324	337	-4	ĩ	ŝ	- 70	73	-1	1	7	-+00	404	-6	1 14	-117	115	3	2	3	165	168
	ō	ž	53	59	+	۰	12	122	128	-3	1	3	382	392	0	1	7	217	558	-5	1 14	49	56	-5	2		170	168
•	٥	2	-118	114	-3	0	12	-54	46	-2	L	э	1510	1051	1	- 1	7	337	343		1 1	-100	93	-4	2		83	
	٥	2	- 36	40	-2	0	12	-57	58	-1	1	з	- 762	683	2	1	7	157	166	-3	1 1	-40	46	-3	2	•	116	122
-6	•	•	-133	136	-1	•	12	80	84		1		-794	732			1				1 1	151	121		-	- 2	100	103
	•	. *	662	676			12	-150	143							. :	•	-144			. : :	-105	101	-	\$	- 2	- 24.2	234
		- 2	302	240				-143				- 1		177		. :		241	200			-105		ĭ	;	- 2	-210	212
		- 2	-005	117		Ň	17	- 81			÷.	- 1	-250	259		i	Ă	142	119	-2	i i	-101	104	ż	2	4	-172	169
	č	- 7	341	358		ŏ	14	139	144		ï	ñ	230	229	-2	ī	۰ī.	-50	54	-6	- î î	-77	77	3	2		44	43
à		- 2	-171	186	- 1	ō	14	104	108	-7	ĩ	- Ă	141	142	-ĩ	ī	8	49	43	-5	1.1	37	41		2	٠	88	87
ī	õ	- 4	-682	667	-4	ō	14	-111	103	-6	ī		-24	39	ĩ	ī		-79	82	-4	11	92	88	-6	2	5	45	45
ž	õ	- 4	-148	150	-3	ō	14	-144	140	- 4	1		-125	130	2	1		-48	74	-6	2	-232	228	-4	2		-267	268
3	٥	. 4	114	117	-2	۰	14	- 52	62	-3	1	•	491	506	3	1		-56	58	-4	5	117	115	-3	2	2	-228	223
•	٥		82	93	-5	0	16	-73	68	-2	1	•	-928	841	-8	ļ	2	-57		-3	2	152	156	-2	3	2	38	
	٥	- 4	101	104		. 0	16	-149	149	-1	1	•	-110	108	- 6	1	2	-108	117	-2	11	-341	392		÷.	2	210	216
-8		•	140	131	-3		10	-02				- 2	-145	127			- 2		240	-:	- 5 - 1	203	260	;	5	- 6	211	201
-9		•	-21									- 2	330	,,,,		- 1		204	105	;	- 5 - 1	-141	342	- 1	;	5	-	47
	Ň	2	212	211		- 1	Ň	- 22			;	- 2	-41		_,	÷		148	145	- 3	2	152	156		2	5	-122	117
	Ň		-715	204	-1	- 1	ŏ	-296	248	-1	÷			46		i	6		95		2	117	113	-7	ž	ò	-52	34
- 5	ŏ	Ň	-724	686	ī	i	ŏ	256	249	-6	ī	- 5	258	268	ī	ī	ģ	330	341	•	2	-232	226	-6	5		28	40
-1	ŏ	6	406	429	ž	ī	õ	- 45	45	- 5	ī	ŝ	99	106	ź	i	9	-97	92	-6	2	-64	57	-5	2	6	194	195
ō	ō	6	-100	120	3	ī	ō	-437	454	-4	i	- 5	17	26	3	1	9	-125	129	-5	2	185	186	-3	2	6	-526	519
1	0	6	-172	178	•	1	0	79	83	-3	1	5	-263	277	-8	1	10	34	43		- 2	309	310	-2	2	٠	-143	130
2	0	6	-74	68	-7	1	1	-91	77	-2	1	5	-135	143	-7	- 1	10	103	103	-3	2	-164	163		-	•	110	111
3	ç	6	627	617	-6	1	<u> </u>	64	68	-1	1	2	-217	274	- ?	_ !	10	-38		-2	3	92			-	2	-210	111
-8	0		79	78	- ?	1	1	-120	1.27	,	1	- 5	-466			- 1	10	212			\$	-454	414		\$		104	104
-!	0		- 79			- 1	- 1	-301	313	- 1	- 1	2	-1/0	:::	_;;	- ;	10	- 99	102	;	;	-205	201	-1	5	ž	-211	207
-0			-215			- 1	- :	457	419		- 1	- 2	- 117		-1	- 1	iŏ	- 75		- 1	2	78	69	-6	ź	7	29	34
	ŏ	å	-171	168	-1	- 1	i	473	442		i	5	76	ii	ō	ī	10	92	95	ŝ	ž	30	30	-5	ž	7	121	120
-2	ŏ	ă	-325	329	i	i	. i	378	373		ĩ	5	48	47	i	ĩ	10	-179	179		2	L 82	78	-4	2	7	-318	318
-i	õ		325	331	ž	ī	ī	-43	49	-1	ĩ	ő	72	70	-6	1	1Î	90	106	-6	2	2 -51	41	-3	2	7	- 54	58

50 87 -131 -131 -250 61 -713 -250 -128 -919 -919 -136 -128 -919 -136 -128 294 -136 -131 -250 -128 -128 294 -137 -128 -137 -128 -136 -136 -128 -136 -136 -136 -136 -136 -136 -136 -136 -136 -136 -136 -136 -137 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -289 -54 -54 -54 -54 -54 -734 -2299 -2299 -2299 -2299 -2299 -2299 -2299 -2299 -249 -250 --77 -77 -126 -133 67 70 159 -121 1000 26 -1711 -121 1000 26 -1715 -121 1000 26 -1715 -121 1000 26 -1715 -121 1000 26 -1715 -121 1000 26 -1715 -121 1000 26 -1715 -121 1000 26 -1715 -121 1000 26 -1715 -121 1000 26 -1715 -121 -121 1000 26 -1715 -121 -1715 -121 -1715 -120 -175 -120 -121 -175 -121 -175 -120 -175 -120 $\begin{array}{c} 34760\\ 8770$ 2223333333333444444445555566666666677777 -71 169 966 -103 -97 103 -97 103 -97 -1067 -118 -97 -118 -97 -118 -13744 44 -141 -792 105 111 199 -955 -84 399 -84 399 -84 399 -84 2122 -336 400 546 -336 400 546 -97 -955 -126 -84 -97 -955 -84 -955 -956 -957 -956 -957 -956 -977 -956 -977 -956 -977 -956 -977 -956 -977 -978 -977 -978 -977 -978 -977 -978 -977 -978 -977 -978 -977 -978 -977 432012374320275421027520432043211451014521042 **************************** $\begin{array}{c} -10t\\ -10t\\ 55\\ -4t\\ 80\\ 115\\ -5\\ -37\\ -141\\ -77\\ -177\\ -177\\ -1277\\ -4t\\ 232\\ 232\\ -113\\ 54\\ -0297\\ -113\\ 54\\ -122\\ 35\\ 54\\ -122\\ -113\\ -68\\ -39\\ -122\\ -418\\ -629\\ -113\\ -649\\ -148\\ -649\\ -7418\\ -7418\\ -$

leau 4 donne les résultats des tests de Burns, Ferrier & McMullan (1967). Tous les atomes satisfont au test de rigidité, sauf C(2) et C(4), qui donnent un résultat négatif, et C(6) pour lequel l'hypothèse n'est ni acceptée ni rejetée. Pour C(4), ce résultat est dû à la forte

Fig. 2. Longueurs des liaisons (Å) et angles (degrés).

valeur du facteur de forme S, pour C(2) et C(6) à la forte valeur de l'angle θ (mais le rapport R_c est très voisin de 1). Pour C(4), θ est également assez grand, mais le rapport R_c est voisin de 1.

Les directions principales des tenseurs T et L ont été exprimées dans le système des axes d'inertie de la molécule. Les moments d'inertie par rapport aux trois axes sont, en Å² g.mole⁻¹: 988 par rapport à x_I (normale au plan moyen), 591 par rapport à y_I [droite O(1) O(4)] et 397 par rapport à z_I . Les résultats sont rassemblés dans le Tableau 4.

On constate que les directions principales de vibration sont assez proches des axes d'inertie. Les mouvements de translation sont les plus faibles suivant la normale x_I au plan de la moléculc. Il n'en est pas de même pour les mouvements de rotation: l'amplitude de rotation est la plus faible autour de l'axe de moindre inertie z_I . Mais cette amplitude (4,2°) n'est sans doute pas significativement différente de l'amplitude des rotations autour de x_I (4,5°). Le fait le plus remarquable est que la direction d'ampliude maximum, pour les translations comme pour les rotations est proche de y_I , c'est à dire de la direction des liaisons C=O et non de l'axe de moindre inertie. Ce fait est peut-être à rapprocher des liaisons intermoléculaires du type $C=O\cdots C=O$ qui ont été observées (voir le paragraphe Distances intermoléculaires).

Tableau	4.	Agitation	thermique	(molecule	rigide)	

			$\langle (U_o - U_c) \rangle$	$^{2}\rangle^{1/2} = 0,0032$	2 Å2	$\langle \sigma^2(U_o) angle^{1/2}$:	=0,0046 Ų			
Tests de	Burns et coll	Uº	$ U^{o} - U^{c} $	$\sigma(U^o)$						
		(Å ² ×10 ⁴)	$(Å^2 \times 10^4)$	$(Å^2 \times 10^4)$	S	θ	R_o	Rc		
	Cl(2)	2948	15	29	4	2°	2,79	2,73	R	
	Cl(6)	3095	29	30	3	3	2,13	2,01	R	
	O(1)	2352	1	82	15	1	2,14	2,10	R	
	O(4)	1943	24	62	20	3	1,55	1,49	R	
	C(1)	1583	38	98	32	10	1,72	1,49	R	
	C(2)	1539	67	92	192	33	1,36	1,06	NR (2	,3)*
	C(3)	1615	99	89	20	18	1,17	1,11	R	
	C(4)	1393	22	89	212	29	1,09	1,32	NR (1	,2)
	C(5)	1686	83	92	12	22	1,07	1,11	R	
	C(6)	1696	12	92	80	27	1,20	1,06	?	
Agitatio	n thermique r	noléculaire								
		Tenseu	r T réduit	`				T	T	
		(axes non	concourants	.)				Tenset	Ir L	
	Amplitude r.m.s.	2	Cosinus dir $(\times 10^3)$	ecteurs			Amplitude r.m.s.	Co	sinus direc $(\times 10^3)$	teurs
т.	0.23 Å	- 375	8 912	, 		Ι.	64Å	459	888	13
T_{1}	0,20	- 10	170	985		L_1	4 5	872	-454	186
\tilde{T}_3^2	0,17	92	6 375	- 55		\tilde{L}_3^2	4,2	171	-73	- 984
						Mouvement h	nélicoïdal			
		Di	rection	G	1	D pas (Å.ra	d ⁻¹) TH			
			L	-0 58 Å	0.4	77Å 016	0.018 Å			
			\tilde{L}_{2}^{1}	0.67	0.4	48 - 0.38	-0.029			
			$\overline{L_3}$	-0.20	0,0	0,05	0,004			

Les notations sont les mêmes que celles utilisées dans l'étude de la chlorobenzoquinone-1,4 (Rees, 1970).

* Les axes de U_c dont les indices figurent entre parenthèses ont été échangés lors de la comparaison avec U_o . (L'ordre 1,2,3 correspond aux valeurs propers décroissantes.)

Description de la structure

Longueurs de liaison et angles de valence

Les longueurs de liaison et angles de valence sont représentés sur la Fig. 2. Ces longueurs et angles sont corrigés des mouvements de rotation moléculaire (Schomaker & Trueblood, 1968). Les corrections des longueurs sont comprises entre 0,008 et 0,015 Å, celles des angles sont inférieures à 0,2°. Les écarts-type estimés moyens sont les suivants:

C-C: 0,006; C=C: $0,008_5$; C=O: 0,007; C-Cl: $0,004_5$ Å; C-C-C, C-C=C et C-C=O: 0,5; C-C-Cl: 0,4; C=C-Cl: $0,4_5^{\circ}$.

Plans moyens

L'équation du meilleur plan passant par les atomes Cl, O et C et celle du meilleur plan passant par les six atomes de carbone ont été déterminées par moindres carrés. Le système d'axes utilisé est défini par les vecteurs de base \mathbf{a}, \mathbf{b} et \mathbf{c}^* , normés à 1 Å. Les résultats sont consignés dans le Tableau 5. Ce Tableau montre que, si le plan du cycle des atomes de carbone n'est peutêtre pas significativement déformé, l'ensemble de la molécule ne peut, par contre, être considéré comme plan.

13	abl	leau	э.	Pl	ans	mo	vens
-			•••				, 0, 10

		Plan C, O, Cl	Plan C
Equation	и	0,7637	0,7581
	v	0,5571	0,5600
	w	-0,3262	-0,3342
	d.(Å)	3,198	3,172
Distances ($Å \times 10^3$)	C(1)	0	-7
	C(2)	3	5
	C(3)	5	3
	C(4)	8	-9
	C(5)	38	12

	Tableau 5	(suite)	
	C(6)	19	-2
	O(1)	23	21
	O(4)	-9	-30
	Cl(2)	- 3	16
	Cl(6)	-6	-38
	H(3)	-30	-30
	H(5)	- 50	- 90
χ_0^2		103	9
v		7	3
$P(\chi^2 \ge \chi_0^2)$		≪0,01	0,025

Les notations sont les mêmes que dans l'étude de la chlorobenzoquinone-1,4 (Rees, 1970).

Distances intermoléculaires

Nous avons calculé toutes les distances inférieures à 3,7 Å entre les atomes de la molécule (i) en position x, y, z et les atomes des molécules voisines. Les distances inférieures à la somme des rayons de van der Waals sont consignées dans le Tableau 6.

Tableau 6.	Distances	intermo	léculaires	inférieures	à	la
somme	des ravon	s de van	der Waa	ls (SRVW)		

Sec. 82

	SRVW	Distance
$O(1) \cdots C(1)$ (iii)	3,16 Å	2,84 Å
$O(1) \cdots C(6)$ (iii)		3,07
$O(1) \cdots C(4)$ (ii)		3,09
$C(1) \cdots O(4)$ (ii)		3,09
$C(1) \cdots C(4)$ (ii)	3,60	3,51
$Cl(2) \cdots Cl(6)$ (iv)	3,56	3,33
$O(4) \cdots H(3)$ (v)	2,53	2,46 (2,36*)

Le premier atome appartient à la molécule (i) en position x, y, z, le deuxième à l'une des molécules:

ii	x, 1+y, z
iii	$1-x,\frac{1}{2}+y,\frac{1}{2}-z$
iv	$x-1,\frac{3}{2}-y,z-\frac{1}{2}$
v	$1 - x_1 - y_2 - z_1$

* Distance obtenue en supposant les liaisons C-H parallèles à C-C et une longueur C-H de 1,08 Å.

Fig.3. Ellipsoïdes de vibration et arrangement des molécules dans le cristal (les explications sont données dans le texte).

Le fait le plus remarquable est la distance très courte (2,84 Å) entre un atome de carbone et un atome d'oxygène de deux groupes carbonyle. Les liaisons intermoléculaires responsables de cette courte distance provoquent un enchaînement des molécules en hélices autour des axes 2₁. Une de ces hélices est représentée, en vue stéréoscopique, sur la Fig. 3. Les molécules (i), (ii) et (iii) ont été représentées. Les courtes distances C···O sont représentées par des traits pointillés.

Si nous considérons les plans moyens de toutes les molécules d'une hélice, il existe un plan P qui leur est perpendiculaire et qui contient l'axe 2₁. Toutes les liaisons C=O sont parallèles au plan P, dont elles ne sont distantes que de 0,11 Å. Il en résulte que le plan P est presque un plan de symétrie de l'ensemble et que les liaisons intermoléculaires $O \cdots C$ s'en écartent très peu. Le décalage de 0,11 Å explique néanmoins que les distances $O(1) \cdots C(6)$ (iii) et $O(1) \cdots C(2)$ (iii), de part et d'autre de la liaison intermoléculaire $O(1) \cdots C(1)$ (iii), soient assez différentes: 3,07 et 3,25 Å respectivement. A noter encore que les liaisons C=O de deux molécules liées [(i) et (iii) par exemple] font entre-elles un angle de 112° et que $O(1) \cdots O(1)$ (iii) est presque perpendiculaire au plan de la molécule (iii), l'angle avec le plan étant de 84°.

Cette dernière particularité est caractéristique de ce type de liaison intermoléculaire, de même que la longueur C···O et l'angle C=O···C. Dans la tétrachlorobenzoquinone-1,4 par exemple (Chu, Jeffrey & Sakurai, 1962), la distance C···O observée est de 2,85 Å et l'angle C=O···C de 161,0°, alors qu'il a été trouvé égal à 160,0° dans B26.

La disposition des molécules dans B26 est très analogue à celle de la tétrachlorobenzoquinone-1,4. Dans ce composé, les molécules sont également disposées en hélices autour de l'axe 2₁, et le plan passant par cet axe et perpendiculaire aux plans des molécules est, comme dans B26, parallèle aux liaisons C=O. Les liaisons C=O de molécules 'liées' font entre elles le même angle de 112°. La principale différence avec B26 est que chaque molécule fait partie de deux hélices car les deux groupes C=O sont engagés dans les liaisons entre molécules.

Les interactions $C \cdots O$, par les rapprochements qu'elles provoquent entre molécules voisines, sont sans doute responsables des autres distances courtes observées entre les atomes O(1) et C(1) de la molécule (i) et divers atomes des molécules (ii) et (iii). On remarque d'autre part, entre hélices différentes des courtes distances $O \cdots H$, ainsi que des courtes distances $Cl \cdots Cl$. La disposition $C-Cl \cdots Cl-C$ est à peu près linéaire

[angle C(2)–Cl(2)···Cl(6):
$$170^{\circ}$$
;
angle Cl(2)···Cl(6)–C(6): 160°].

Bent (1968) donne d'autres exemples de ce type de disposition et considère qu'il s'agit d'une interaction donneur-accepteur, tout en reconnaissant que la raison de la disposition linéaire reste un mystère.

Références

- BENT, H. A. (1968). Chem. Rev. 68, 587.
- BURNS, D. M., FERRIER, W. G. & MCMULLAN, J. T. (1967). Acta Cryst. 22, 623.
- Chu, S. C., Jeffrey, G. A. & Sakurai, T. (1962). Acta Cryst. 15, 661.
- GOLDSTEIN, P., SEFF, K. & TRUEBLOOD, K. N. (1968), Acta Cryst. B24, 778.
- GROTH, P (1917). Chemische Krystallographie, 4. Teil, p. 142, Leipzig: Engelmann.
- KEHRMANN, F. & TIESLER, W. (1889). J. Prakt. Chem. 40, (2), 480.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- PREWITT, C. T. (1962), FORTRAN Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- REES, B. (1970). Acta Cryst. B26, 1292.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- YATES, P., ARDAO, M. I. & FIESER, L. F. (1965). J. Amer. Chem. Soc. 78, 650.